

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

OXIDATION OF PURE METALS

http://home.agh.edu.pl/~grzesik

Fundamental literature

- P. Kofstad, "High-Temperature Oxidation of Metals", John Wiley & Sons, Inc, New York-London-Sydney, 1978.
 - 2. S. Mrowec, Kinetyka i mechanizm utleniania metali, 1980.
 - 3. S. Mrowec, "An Introduction to the Theory of Metal Oxidation", National Bureau of Standards and the National Science Foundation, Washington, D.C., 1982.
 - 4. A.S. Khanna, "Introduction to High Temperature Oxidation and Corrosion", ASM International, Materials Park, 2002.
 - Wei Gao and Zhengwei Li "Developments in high-temperature corrosion and protection of metals", Ed, Woodhead Publishing Limited, Cambridge, England, 2008.
 - 6. N. Birks, G.H. Meier and F.S Pettit, Introduction to the high temperature oxidation of metals, Cambridge, University Press, 2009.
 - R. Cottis, M. Graham, R. Lindsay, S. Lyon, J. Richardson, J. Scantlebury, F. Stott, "Basic Concepts, High Temperature Corrosion, tom I" w "Shreir's Corrosion", Elsevier, Amsterdam, 2010.
 - 8. D. J. Young, "High temperature oxidation and corrosion of metals", Elsevier, Sydney 2016.

 $O_2(g) \rightarrow O_2(ad) \rightarrow 2O(ad) \rightarrow 2O^-(chem) + 2h^{\bullet} \rightarrow 2O^{2-}(latt) + 4h^{\bullet}$

N. Birks, G.H. Meier and F.S Pettit, Introduction to the high temperature oxidation of metals, Cambridge, University Press, 2009

Selected properties of chosen metal oxides

Oxide	Structure	Melting point, °C	Boiling point, °C	Molar volume, cm ³	Volume ratio (oxide/metal)		
α -Al ₂ O ₃	$D5_1$ (corundum)	2015	2980	25.7	1.28		
γ-Al ₂ O ₃	(defect spinal)	$\gamma \rightarrow \alpha$		26.1	1.31		
BaO	Bl (NaCl)	1923	~2000	26.8	0.69		
BaO_2	Tetragonal (CaC ₂)	450	d.800	34.1	0.87		
BeO	Br (ZnS)	2530	~3900	8.3	1.70		
CaO	Bl (NaCl)	2580	2850	16.6	0.64		
CaO ₂	$Cll (CaC_2)$		d.275	24.7	0.95		
CdO	B1 (NaCl)	~1400	d.900	18.5	1.42		
Ce_2O_3	$D5_2 (La_2O_3)$	1692		47.8	1.15		
CeO ₂	$Cl (CaF_2)$	~2600		24.1	1.17		
CoO	Bl (NaCl)	1935	•••	11.6	1.74		
Co ₂ O ₃	Hexagonal		d.895	32.0	2.40		
Co_3O_4	Hl_1 (spinal)	\rightarrow CoO		39.7	1.98		
Cr_2O_3	$D5_1 (\alpha Al_2O_3)$	2435	4000	29.2	2.02		
Cs ₂ O	Hexagonal (CdCl ₂)		d.400	66.3	0.47		
Cs ₂ O ₃	Cubic (Th_3P_4)	400	650	70.1	0.50		
CuO	B26 monoclinic	1326		12.3	1.72		
Cu ₂ O	C3 cubic	1235	d.1800	23.8	1.67		
FeO	Bl (NaCl)	!420		12.6	1.78 on α -iron		
α -Fe ₂ O ₃	D5 ₁ (Haematite)	1565		30.5	2.15 on α -iron		
γ-Fe ₂ O ₃	$D5_7$ cubic	1457		31.5	2.22 on α -iron		
Fe ₃ O ₄	Hl_1 (spinel)	سر ۰۰۰	d. 1538	44.7	2.10 on α -iron		
Ga_2O_3	Monoclinic	1900		31.9	1.35		
HfO ₂	Cubic	2812	~5400	21.7	1.62		

www.agh.edu.pl

AGH

Selected properties of chosen metal oxides

AGH	Oxide	Structure	Melting point, °C	Boiling point, °C	Molar volume, cm ³	Volume ratio (oxide/metal)
ī.	In ₂ O ₃	$D5_3(Sc_2O_3)$		d.850	38.7	1.23
	IrO_2	C4 (TiO ₂)	••• •	d.1100	19.1	2.23
	La_2O_3	D53 (Sc_2O_3)		d.850	38.7	1.23
	Li ₂ O	$Cl (CaF_2)$	~1700	1200	14.8	0.57
	MgO	Bl (NaCl)	2800	3600	11.3	0.80
	MnO	Bl (NaCl)			13.0	1.77
	MnO_2	C4 (TiO ₂)		d.535	17.3	2.37
	Mn_2O_3	D53 (Sc_2O_3)		d.1080	35.1	2.40
	Mn_3O_4	Hl ₁ (spinel)	1705		47.1	2.14
	MoO ₃	Orthorhombic	795		30.7	3.27
	Na ₂ O	$Cl(CaF_2)$	Subl. 1275		27.3	0.57 <i>L</i>
	Nb_2O_5	Monoclinic	1460		59.5	2.74
	Nd_2O_3	Hexagonal	~1900		46.5	1.13
	NiO	Bl (NaCl)	1990		11.2	1.70
	PbO	B10 tetragonal	888	•••	23.4	1.28
	Pb ₃ O ₄	Tetragonal		d.500	75.3	1.37
	PdO	B17 tetragonal	870		14.1	1.59
	PtO	B17 (PdO)	• • •	d.550	14.2	1.56
	Rb_2O_3	(Th_3P_4)	489		62.0	0.56
	ReO ₂	Monoclinic		d.1000	19.1	2.16
	Rh_2O_3	D51 (α -Al ₂ O ₃)		d.1100	31.0	1.87
	SiO	Cubic	~1700	1880	20.7	1.72

Selected properties of chosen metal oxides

Oxide	Structure	Melting point, °C	Boiling point, °C	Molar volume, cm ³	Volume ratio (oxide/metal)	
SiO ₂	β cristobalite C9	1713	2230	25.9	2.15	
SnO	B10 (PbO)		d.1080	20.9	1.26	
SnO_2	C_4 (TiO ₂)	1127	·	20.9	1.26	
SrO	Bl (NaCl)	2430	~3000	22.0	0.65	
Ta_2O_5	Triclinic	1800		53.9	2.47	
TeO_2	C_4 (TiO ₂)	733	1245	28.1	1.38	
ThO_2	$Cl(CaF_2)$	3050	4400	26.8	1.35	
TiO	Bl (NaCl)	1750	~3000	13.0	1.22	
TiO ₂	C4 (Rutile)	1830	~2700	18.8	1.76	
Ti_2O_3	$D5_1 (\alpha - Al_2O_3)$		d.2130	31.3	1.47	
Tl_2O_3	$D5_3 (Sc_2O_3)$	717	d.875	44.8	1.30	
UO_2	Cl (CaF ₂)	2500		24.6	1.97	
U_3O_8	Hexagonal		d.1300	101.5	2.71	
VO ₂	C4 (TiO ₂)	1967		19.1	2.29	
V_2O_3	$D5_1 (\alpha - Al_2O_3)$	1970		30.8	1.85	
V_2O_5	D87 Orthorhombic	690	d.1750	54.2	3.25	
WO_2	C4 (TiO ₂)	~1550	~1430	17.8	1.87	
B-WO ₃	Orthorhombic	1473		32.4	3.39	
W_2O_5	Triclinic	Sub.~850	~1530	29.8	3.12	
Y_2O_3	$D5_3 (Sc_2O_3)$	2410		45.1	1.13	
ZnO	B3 (wurtzite)	1975		14.5	1.58	
ZrO_2	C4 ₃ monoclinic	2715		22.0	1.57	

www.agh.edu.pl

the state of the second st

AGH

If metal oxidation takes place due to inward oxidant diffusion, then the ratio of the molar volume between the oxide and metal (V_{ox}/V_m) being greater than one means expansion of the metalscale system, which generates stresses that compress the oxide. However, if this ratio is below 1, then a porous oxide is formed. A compact scale without stresses should grow for a molar volume oxide to metal ratio equal to 1.

In the case of outward metal diffusion, $V_{ox}/V_m > 1$ does not mean that stresses are generated.

The Pilling-Bedworth rule, while conceptually correct, does not allow for a reliable quantitative description of stresses in most metal-scale systems, due to the presence of several additional factors that influence the stress formation mechanism, not taking into account e.g. process temperature, pressure, reaction time, oxide grain size, surface preparation method, mutual reagent diffusion.

N. Birks, G.H. Meier and F.S Pettit, Introduction to the high temperature oxidation of metals, Cambridge, University Press, 2009

S. Mrowec, Z. Grzesik , Journal of Physics and Chemistry of Solids 65 (2004) 1651–1657

M. Drożdż, B. Wierzba, Z. Grzesik, High Temperature Materials and Processes, <u>37(1)</u>, 17-23 (2018)

N. Birks, G.H. Meier and F.S Pettit, Introduction to the high temperature oxidation of metals, Cambridge, University Press, 2009

N. Birks, G.H. Meier and F.S Pettit, Introduction to the high temperature oxidation of metals, Cambridge, University Press, 2009

S. Mrowec and Z. Grzesik, Journal of Physics and Chemistry of Solids, <u>64</u>, 1387-1394 (2003)

S. Mrowec, *An Introduction to the Theory of Metal Oxidation*, National Bureau of Standards and National Science Foundation, Washington D.C., 1982.

S. Mrowec, *An Introduction to the Theory of Metal Oxidation*, National Bureau of Standards and National Science Foundation, Washington D.C., 1982.

Z. Grzesik, M. Migdalska and S. Mrowec, High Temperature Materials and Processes, <u>30</u>, 277-287 (2011)

Z. Grzesik, M. Migdalska and S. Mrowec, High Temperature Materials and Processes, <u>30</u>, 277-287 (2011)

Z. Grzesik, M. Migdalska and S. Mrowec, High Temperature Materials and Processes, <u>30</u>, 277-287 (2011)

S. Mrowec, "An Introduction to the Theory of Metal Oxidation", National Bureau of Standards and the National Science Foundation, Washington, D.C., 1982.

S. Mrowec and T. Werber, Modern Scaling-Resistant Materials, National Bureau of Standards and National Science Foundation, Washington D.C., 1982.

Kinetics of the Cr₂O₃ scale thickness growing during chromium oxidation

Kinetics of metal thickness loss during oxidation of pure chromium AGH 10^{-1} Oxidation of Cr 10^{-2} Metal loss / cm 1673 K 1473 K 10⁻³ 10^{-4} 10^{3} 10^{5} 10^{7} 10^{8} 10^{4} 106 Time / s

Influence of the type of chromium surface treatment on its oxidation rate

The chromium oxidation rate depends on grain size and crystallographic orientation, which can be controlled, to a certain extent, by the choice of surface treatment (grinding and polishing, electropolishing, etching). Electropolished chromium oxidizes very fast, however on etched chromium certain grains oxidize very quickly and others significantly slower.

CONCLUSION:

An oxide formed in the initial oxidation stage determines to a large degree the oxidation rate in the later stages of the process.

P. Kofstad, *High Temperature Corrosion*, Elsevier Applied Science, London and New York, 1988.

AGH

Oxidation of metals (Mo, Nb) and Si leading to the formation of volatile reaction products

N. Birks, G.H. Meier and F.S Pettit, Introduction to the high temperature oxidation of metals, Cambridge, University Press, 2009

S. Mrowec, "An Introduction to the Theory of Metal Oxidation", National Bureau of Standards and the National Science Foundation, Washington, D.C., 1982.

Influence of temperature and oxygen pressure on titanium oxidation kinetics

S. Mrowec, "An Introduction to the Theory of Metal Oxidation", National Bureau of Standards and the National Science Foundation, Washington, D.C., 1982.

www.agh.edu.pl

AGH

Oxidation process kinetics of selected metals

www.agh.edu.pl

Metal	Temperature, °C											
	1	00 2	.00 30	00 4	00 50	00 6	500 70	00	800 9	000 10	000 11	00
Mg	log.		par.	par	alin.	lin.						
Ca	log.		F	bar.	lin.	lin.						
Ce	log.	lin.	incr.									
Th			par.		lin.	lin.						
U	par.	paralin.	lin.	incr.			2					
Ti			log.		cu.	cu.	paralin.			paralin.		
Zn			log	. cu		cu.			cu.	cu.	lin.	
Nb			par.	par.	para	lin.	li	n.	lin.		incr.	
Та	log. in	v. log.		par.	para	alin.	11	n.	li	in.		
Мо			par.	para	lin.	paralin.	11	n.	1	in.		
W				par.		par.	par	alin.	par	alin.	par	alin.
Fe	log.	log.	par.	par.	pa	ar.	p	ar.	р	ar.		par.
Ni		log.	log.	cu.	pa	ır.	-		р	ar.		par.
Cu	1	og. cu. d	cu.		pa	ır.	par.	p	ar.			
Zn		log	log.	par.								
Al	log. in	v. log.	log.	par.	1	in.						
Ge				pa	ir.	par	alin.					

Denotations: log. — logarithmic law; inv. log. — inversely logarithmic law; cu — cubic law; par. — parabolic law; paralin. — paralinear law; lin. — linear law; incr. — increased oxidation rate.

S. Mrowec, "An Introduction to the Theory of Metal Oxidation", National Bureau of Standards and the National Science Foundation, Washington, D.C., 1982.

THE END